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ABSTRACT

Parents affect offspring fitness by propagule size and quality, selection of oviposition site, quality of incubation, feeding of
dependent young, and their defence against predators and parasites. Despite many case studies on each of these topics,
this knowledge has not been rigorously integrated into individual parental care traits for any taxon. Consequently, we
lack a comprehensive, quantitative assessment of how parental care modifies offspring phenotypes. This meta-analysis
of 283 studies with 1805 correlations between egg size and offspring quality in birds is intended to fill this gap. The large
sample size enabled testing of how the magnitude of the relationship between egg size and offspring quality depends
on a number of variables. Egg size was positively related to nearly all studied offspring traits across all stages of the
offspring life cycle. Not surprisingly, the relationship was strongest at hatching but persisted until the post-fledging
stage. Morphological traits were the most closely related to egg size but significant relationships were also found
with hatching success, chick survival, and growth rate. Non-significant effect sizes were found for egg fertility, chick
immunity, behaviour, and life-history or sexual traits. Effect size did not depend on whether chicks were raised by
their natural parents or were cross-fostered to other territories. Effect size did not depend on species-specific traits such
as developmental mode, clutch size, and relative size of the egg, but was larger if tested in captive compared to wild
populations and between rather than within broods. In sum, published studies support the view that egg size affects
juvenile survival. There are very few studies that tested the relationship between egg size and the fecundity component
of offspring fitness, and no studies on offspring survival as adults or on global fitness. More data are also needed for the
relationships between egg size and offspring behavioural and physiological traits. It remains to be established whether
the relationship between egg size and offspring performance depends on the quality of the offspring environment.
Positive effect sizes found in this study are likely to be driven by a causal effect of egg size on offspring quality. However,
more studies that control for potential confounding effects of parental post-hatching care, genes, and egg composition
are needed to establish firmly this causal link.
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I. INTRODUCTION

Parental effects are presently a focus of interest to ecologists
and evolutionary biologists (Badyaev & Uller, 2009). Of
particular interest is the question of how variation in
the environment provided by the parents affects offspring
phenotype (e.g. Groothuis et al., 2005; Green, 2008; Marshall
& Keough, 2008). This relationship may be studied using
two analytical approaches (Lynch & Walsh, 1998; see
also McGlothlin & Brodie, 2009). In the first, offspring
phenotypic variation is decomposed to its causal components
by employing breeding designs, pedigree analysis, and
cross-fostering (Kruuk, 2004; Kruuk & Hadfield, 2007;
Wilson et al., 2010). As a result we know how large the
variance component of an offspring trait is due to common
environmental and/or parental effects. However, we do not
know which parental trait caused this variation, which is often
of great interest. The second approach is a regression analysis
(Lande & Price, 1989). All parental traits that causally affect
offspring traits of interest should be included as predictors of
the multivariate regression to find their net effects (Lande &
Price, 1989). This condition can be difficult, if not impossible,
to achieve. If the results are interpreted with caution however,
the regression approach is useful, especially in combination
with some experimental settings (Krist & Remeš, 2004).

Most studies that used the decomposition of variance
method detected a significant parental component in off-
spring traits such as morphology (Kruuk, Merilä & Sheldon,
2001; McAdam et al., 2002; DiBattista et al., 2009), immu-
nity (Soler, Moreno & Potti, 2003; Kilpimaa et al., 2005;
Pitala et al., 2007), rate of development (Fox, 1993; Rauter
& Moore, 2002; Winn, 2004), life-history (Hunt & Simmons,
2002; Fox, Czesak & Wallin, 2004; Charmantier et al., 2006),

and behaviour (Forstmeier, Coltman & Birkhead, 2004).
Parental effects are often contingent on environment or
the timing of measurements. They may significantly dif-
fer between populations (Ardia & Rice, 2006) and years
(Gebhardt-Henrich & van Noordwijk, 1994), and they typi-
cally decrease as young grow older (Charmantier et al., 2006;
Lindholm, Hunt & Brooks, 2006; Wilson & Réale, 2006).
They may be more pronounced in poor-quality environ-
ments (McAdam & Boutin, 2003; Charmantier et al., 2004).
This is well supported by observations that environmental
variance, to which parental effects contribute, increases while
heritability decreases in poor-quality environments (Merilä
& Sheldon, 2001; Charmantier & Garant, 2005). In sum,
parental effects are pervasive, although their magnitude dif-
fers among offspring traits, environments and life-history
stages.

Given their widespread occurrence, a logical question
arises: what particular qualities of parents mediate these
effects? Regression analyses often reveal the effects of parental
size (Gebhardt-Henrich & van Noordwijk, 1991; Schrader
& Travis, 2009), condition (Schluter & Gustafsson, 1993),
age (Fox, Bush & Wallin, 2003; Berkeley, Chapman &
Sogard, 2004; Bowen, 2009), diet (Bonduriansky & Head,
2007), exposure to parasites (Gallizzi & Richner, 2008),
social environment (Kerrigan, 1997; Mateo, 2009), and
sexual ornamentation (Griffith, Owens & Burke, 1999) on
various offspring characters (see Green, 2008, for an extensive
review in fishes). Although these relationships are of interest,
parental characters are correlates, rather than causes of
variation in offspring performance traits. Parents causally
affect offspring performance by parental care (Clutton-
Brock, 1991), that may take the form of selection of safe
(Weidinger, 2002; Remeš, 2005) or high nutritional quality
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(Agosta, 2008) oviposition sites, investment in propagule
size (reviews in Williams, 1994; Bernardo, 1996), propagule
quality (review in Blount, Houston & Møller, 2000; Gil, 2003;
Groothuis et al., 2005), incubation behaviour (Kovařík, Pavel
& Chutný, 2009; Matysioková & Remeš, 2010; review in
Deeming, 2002), food provisioning (Schwagmeyer & Mock,
2008; Krist, 2009), and active defence of offspring (Krist,
2004; Grim, 2005; Divino & Tonn, 2008). In sum, parents
may affect offspring quality by several pathways and parental
abilities to invest in these pathways are affected by conditions
that they experience.

One possibility for how to give offspring a good start
in life is to allocate extra resources to the propagule.
However, this action is likely to be costly for a parent.
The trade-off between the number and size of offspring is
one of the central tenets in life-history evolution (Stearns,
1992; Roff, 2002). The first optimality model of this trade-
off was given by Smith & Fretwell (1974). Their model
relies on two assumptions. First, the energy available for
reproduction is limited to a finite amount at any given time.
Second, offspring fitness increases with parental per offspring
investment. Subsequent models explored optimal parental
allocation under more complex conditions. They assumed a
larger dependence of offspring fitness on parental investment
in harsh, competitive environments which thus select for
larger propagules (Brockelman, 1975; Parker & Begon,
1986; McGinley, Temme & Geber, 1987). In addition to
this between-female variation, allocation of resources within
clutches has received substantial attention. First, in highly
variable environments, females adopt a bet-hedging strategy
and divide resources unequally within a clutch (Koops,
Hutchings & Adams, 2003; Crean & Marshall, 2009; see also
Geritz, 1995). Second, individual eggs may have different
reproductive value due to spatial position in a clutch (Kudo,
2001), laying sequence (Williams, Lank & Cooke, 1993a;
Riehl, 2010) or paternity (Sheldon, 2000; Krist et al., 2005).
By differential resource allocation, females might avoid
investment in eggs with poor survival prospects (Williams
et al., 1993a; Kudo, 2001; Riehl, 2010) and facilitate
(Slagsvold et al., 1984; Krist et al., 2005; Magrath et al., 2009;
Reed, Clark & Vleck, 2009; Kozlowski & Ricklefs, 2010) or
counteract (Howe, 1976; Rosivall, Szöllősi & Török, 2005;
Ferrari, Martinelli & Saino, 2006) within-brood competitive
asymmetries caused by hatching asynchrony or paternity. All
the above models assume greater fitness of large eggs. This
seems to be a reasonable assumption in terrestrial habitats; in
aquatic environments egg size may have a negative impact
on hatching success due to limited diffusion of oxygen to
developing embryos combined with a positive impact on
post-hatching survival (Hendry, Day & Cooper, 2001).

Although the assumption of increasing offspring fitness
with egg size seems to be reasonable, is there empirical evi-
dence for this relationship? The relationship between egg
size and offspring performance has been studied in every
oviparous vertebrate class as well as in plants and many
invertebrate taxa. These case studies have been reviewed as
a part of wider, narrative reviews of maternal effects in plants

(Roach & Wulff, 1987; Donohue & Schmitt, 1998), marine
invertebrates (Marshall & Keough, 2008), arthropods (Fox &
Czesak, 2000), and fish (Heath & Blouw, 1998). These reviews
found positive relationships between propagule size and off-
spring quality. However, the amount of available data was
generally too small to allow strong conclusions. Moreover,
these relationships were sometimes limited to harsh environ-
ments (Donohue & Schmitt, 1998; Fox & Czesak, 2000) or
early stages in the offspring life cycle (Heath & Blouw, 1998).

In birds, the relationship between egg size and offspring
performance was the target of a specialized review by
Williams (1994). Based on 60 studies, he found that this
relationship was more evident in precocial than altricial
species and in early compared to late phases in the chick-
rearing period. He concluded: ‘‘There is little unequivocal
evidence to date in a support of a positive relationship
between egg size and offspring fitness in birds.’’ (p. 54). His
review was a narrative one and the conclusions were largely
based on a comparison of a number of studies that found or
did not find statistically significant egg-size effects. However,
statistical significance is a poor measure of effect size since
it confuses effect size and sample size. Therefore narrative
and vote-counting reviews based on statistical significance of
effect sizes found in primary studies are prone to errors and
often lead to erroneous conclusions (Borenstein et al., 2009,
pp. 251–255). What is needed is a formal meta-analysis that
bases the conclusions on effect size while also taking into
account sample size (Arnqvist & Wooster, 1995). Despite this
limitation, William’s (1994) review together with the volume
by Mousseau & Fox (1998), and the introduction of yolk
hormones as modifiers of chick growth and behaviour by
Schwabl (1993, 1996) led to an increased interest in egg-size
effects in birds and a boom of publications on this topic.

The aim of the present study was to perform a meta-
analysis of studies testing for the correlation between egg size
and offspring quality in birds and thus provide a comprehen-
sive, quantitative estimate of the strength of the propagule
size—offspring quality relationship. This meta-analysis is
based on 283 studies and 1805 estimates of effect size. The
large sample size enabled testing of how the effect size
depends on a number of variables. The variables included
environment (captivity versus wild), level of variance in egg
size (between-clutch, intraclutch, mixed), type of study design
(e.g. cross-fostering versus observational), stage in offspring life
cycle (egg, hatchling, nestling, post-fledging), nestling age,
offspring traits (e.g. survival, morphology, immunity, growth
rate), and species attributes (relative egg size, clutch size,
developmental mode). After reviewing the field, I identify
gaps in our knowledge, suggest avenues of further research,
and discuss methodological issues related to estimation of the
egg-size effect.

II. METHODS

(1) Data search and inclusion criteria

Three electronic databases were searched for studies that
described the relationship between egg size and offspring
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traits: Web of Science (since 1945), Zoological Record (since
1978), and Biological Abstracts (since 1990) with the last access
on 5th October 2009. The exact search term is given in
Appendix S1. In addition, reference lists of those studies
that contained relevant data as well as that of Williams
(1994) were searched. A third source of data was studies that
were found accidentally, e.g. while reading them for other
purposes. The study was included in the meta-analysis if it
passed through all of the following selection criteria:

(1) The study contained a direct test of the relationship
between egg size and offspring traits. A direct test
means that egg size was either an independent (for
example when offspring mass is regressed on egg mass)
or a dependent (for example when the size of hatched
and unhatched eggs is compared using a t-test) variable
in the statistical test. Tests were not included in which
categorical variables, whose levels differed in mean egg
size, were used as predictors of offspring traits. These
variables were for example pair experience (Ollason
& Dunett, 1986), or experimental treatments such as
food supplementation (Bolton, Houston & Monaghan,
1992), tamoxifen injection (Williams, 2001; Wagner
& Williams, 2007), or direct manipulation of egg size
(e.g. Bonisoli-Alquati et al., 2008). The manipulative
studies are useful for our understanding of maternal
effects but at present too few such studies exist for a
separate analysis and they are too different to pool with
the rest of the data (see Section IV/5). Also excluded
were tests that used hatchling mass as a surrogate of
egg mass (e.g. Davis, 1975; O’Connor, 1975).

(2) The egg size was measured at the level of an individual
egg or a clutch. Tests that correlated mean egg
size measured at a higher hierarchical level such as
population (Kroll & Haufler, 2007) or year (Järvinen,
1994) were excluded. These correlations were likely to
be confounded by factors varying among populations
or years and thus probably do not reveal the causal
effect of egg size on offspring traits.

(3) The study was carried out on non-domesticated
species/populations that were not kept for commercial
purposes such as meat and egg production.

(4) The study involved ecologically relevant offspring
traits; i.e. traits with either a known or at least
assumed relationship to fitness. Tests relating egg size
to neonatal body composition (see e.g. Anderson &
Alisauskas, 2002) were not included since it is not clear
whether it is better to have more lipids or proteins in
the body.

(5) The study contained enough information to enable
computation of the exact effect size and study variance
(sample size) or at least an estimation of these quantities
as explained in Section II/3. If this information was
not evident from the published version, the authors
were contacted for these details. For example, most
of the data contained in a detailed study by Schifferli
(1973) could not be used since means and regression

coefficients given in the paper were not accompanied
by standard errors or deviations.

(6) The study did not have a problematic experimental
design or data analyses. For example, studies were
excluded that cross-fostered clutches with large eggs
for those with small eggs as egg-size effects could cancel
out with parental rearing abilities in this experimental
setting (e.g. Mänd, 1985; Arnold, Hatch & Nisbet,
2006). Also excluded were studies that were likely to
suffer from a large multicollinearity between predictors
in a multiple regression such as if egg volume, egg
length, and egg breadth were tested in the same
model (e.g. Adamou et al., 2009). Similarly, if the study
tested egg-size effects in a model also containing the
interaction of egg size with another variable, the data
were only included if separate estimates for different
levels of the interacting factors were given or if the
authors provided test statistics for the model without
this interaction. It would be erroneous to use a test of
the main effect as a measure of effect size when the
interaction effect is included in the same model (see
Engqvist, 2005).

(2) Effect size computation

Pearson’s correlation coefficient (r) was used as a measure
of effect size. If a test statistic other than a correlation
coefficient was published, I converted it to r according to
the formulae given in Rosenthal (1994). It is important to
realize the potential difference between the statistical and
biological direction of an effect. In this meta-analysis the two
are likely to be the same for most offspring traits such as for
example offspring size and survival, as both of these traits
are probably positively related to offspring fitness. Therefore
biological direction was considered the same as the statistical
one with the exception of offspring’s laying date (Krist,
2009), since earlier laying usually confers fitness benefits (e.g.
Sheldon, Kruuk & Merilä, 2003).

In most published studies egg size was measured on
a continuous scale and all values of egg size were used
for the statistical test. However, two other approaches
were quite common. First, egg size was dichotomized into
categories, for example large and small eggs. Second, only
part of the available egg sizes were used. Typically the
test was based on only large and small eggs while middle-
sized eggs were excluded. The first type of data handling
is called dichotomization of the continuous independent
variable while the second is called range enhancement
in the independent variable. The effect size obtained in
the first case is underestimated while in the second it is
overestimated compared to the whole population. Therefore
the effect size for these two treatments was adjusted
according to the formulae given in Hunter & Schmidt (2004,
p. 36–37). For adjustment to range enhancement (or range
restriction) it is necessary to know the ratio of standard
deviations (S.D.s) of an enhanced/restricted study to an
unenhanced/unrestricted study. This was estimated using a
large (100 000) sample normal distribution with S.D. = 1.
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Fig. 1. Number of studies that tested the relationship between
egg size and offspring quality in non-domesticated birds
(N = 297) and the number of all studies included in the Science
Citation Index Expanded database at Web of Science (WOS) in
four decades. The egg-size studies with complete information
published all the details needed for computation of effect size.
This was not the case for studies with incomplete information.

These simulated data were restricted in the same way as
they were restricted in the study in question and then the
S.D. of this restricted dataset was examined. Formulae for
both dichotomization and range restriction/enhancement
worked well and the adjusted effect sizes were closer to real
ones than were unadjusted ones. This was confirmed on a
large simulated dataset (results not shown). For small samples,
these adjustments also worked well on average but may have
overestimated or underestimated the real effects in individual
cases due to sampling variance. In four cases the adjusted r

was larger than 1.00. r was set at 0.99 in these four cases. All
these cases had small weight because (1) they were based on
a small sample size and (2) the study variance was increased
by dichotomization and range restriction. Moreover, all of
them were merged with other estimates to give one estimate
per study.

If the data were presented only in the form of graphs,
these were scanned and the values read by one of two
programs (scatterplots: DigitizeIt; bar plots: Tpsdig). If the
information necessary for computation of effect size or
study variance was missing, which was unfortunately quite
common (Fig. 1), the authors were contacted for the missing
details. Two types of information were necessary to compute
effect size: (1) magnitude of the effect (this may be inferred,
for example, from the F value if degrees of freedom are
provided), (2) direction of effect (i.e. was the relationship
between egg size and offspring trait positive or negative?).
This latter information cannot be inferred from the F value,
t value, chi-squared value, or P value standing alone.

(3) Estimation of effect size when published
information was incomplete

The effect size was estimated if the missing details were not
provided by the authors or if the authors were not located.
Most often, the information was missing because the result

of the statistical test was stated as non-significant only. If the
sample size was known, the upper boundary for the size of
these non-significant effects could be computed. This upper
boundary could be used as an estimate of effect size. More
reasonable, however, was to use the value in the middle
between this upper boundary and zero as an estimate of
effect size. This was confirmed on a sample of 852 effect sizes
from this meta-analysis which were non-significant but the
magnitude and direction of the effect was known. The true
mean correlation coefficient in this sample was 0.081. If the
sign of negative correlations from this sample was changed to
make all 852 estimates positive, the mean correlation would
rise to 0.139. If we just know that these coefficients were
non-significant and computed the upper boundary for them,
this would equal 0.293. By this method they would be highly
overestimated. The overestimation would not be so high if
the latter rule is used [(0.293 + 0)/2 = 0.146]. Therefore
this latter rule was used to estimate the magnitude of effect.
The same rule was applied when the result was published
as significant only—the estimated effect was in the middle
between the lower boundary and 1.0.

All effects for which the direction of effect (N =
162 of 1805) was unknown were set as positive, resulting
in an overestimation of the mean effect size. However, this
overestimation is small because the magnitude of these effects
is generally small. When these effects are set as positive,
the mean weighted effect in the whole sample (N = 1805)
is r = 0.210. If these 162 effects were set as negative,
the mean effect size would only decrease to r = 0.195.

Importantly, setting these effects as positive leads to lower
overestimations of the mean effect size than if these effects
with an unknown direction were excluded from the study
(mean r = 0.217; N = 1643).

In sum, the magnitude of the effect or its direction was
unavailable in 176 of 1805 cases (see Fig. 2). These estimated
effects were included in the analyses to increase sample size
and avoid selective exclusion of part of the data. However,
all models were also refitted without these effects to check
the sensitivity of the results to this uncertainty.

(4) Coding of moderator variables

(a) Individual-effect moderators—general

The main purpose of this review was not to find the mean
effect size but to identify influential moderators of effect size.
For each effect size the following 18 variables were coded.

(1) Study.
(2) Year of study publication.
(3) Species.
(4) Title—whether the title of the study included the term

‘‘egg size’’ or a similar term that suggested that egg size
was the main focus of the study. Levels: (a) Yes—‘‘egg
size’’ appeared in the title; (b) No—‘‘egg size’’ did not
appear in title.

(5) Environment—levels: (a) Wild —the study was done
in the wild (e.g. Parsons, 1970; Williams et al.,
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Fig. 2. Funnel plot. Residuals from the final model with the
common-weighting scheme were used instead of raw effect
sizes due to significant heterogenity (see Figs 3–4) in the latter.
Solid circles (N = 1629): exact effect sizes; for these effects
both exact magnitude and direction (positive or negative) were
known. Open circles (N = 176): estimated effect sizes; either the
exact magnitude or direction of these effects was unknown. The
dotted line indicates weighted mean residual effect size. The line
deviates slightly from zero on the y axis due to back-calculation
of Zr residuals to r residuals.

1993b; Bogdanova, Nager & Monaghan, 2006),
(b) Captivity—the study was done in captivity (e.g.
Pinkowski, 1975; Ricklefs, Bruning & Archibald, 1986;
Anderson, Reeve & Bird, 1997).

(6) Predictor—the predictor of offspring traits. Levels: (a)
Egg size—predictor was egg size from which chicks
hatched. (b) Parental quality—this was specific to the
cross-fostering design, predictor was the size of eggs
originally laid on the territory where cross-fostered
chicks were raised (see e.g. Amundsen & Stokland,
1990; Reid & Boersma, 1990; Krist, 2009).

(7) Variance level—level at which predictor was
measured. Levels: (a) Between-clutch—egg size was
averaged within clutches (e.g. Schifferli, 1973;
Magrath, 1992; Dawson & Clark, 2000). Also included
were data on species that lay single-egg clutches
(e.g. Feare, 1976; Weidinger, 1996; Silva et al.,
2007). (b) Within-clutch—only egg size variability at
within-clutch level was used [see variable 8 for
how this condition was achieved (e.g. Howe, 1976;
Krist et al., 2004; Maddox & Weatherhead, 2008)].
(c) Total —predictor was the size of an individual egg
without taking into account which clutch it originated
from (e.g. Parsons, 1970; Hořák & Albrecht, 2007;
Oh & Badyaev, 2008). This was therefore a mix of
within-clutch and between-clutch variation.

(8) Study design—this depended on the former variable.
For variance measured at the between-clutch and
total levels, three designs were distinguished: (a) Cross-

fostering —eggs were cross-fostered between pairs of
parents (e.g. Reid & Boersma, 1990; Styrsky, Eckerle &
Thompson, 1999; Krist, 2009). (b) Observational —eggs
were not cross-fostered (e.g. Lloyd, 1979; Ramos,
2001; Parker, 2002), (c) Mixed —mix of the two former
designs. Statistical tests were based on pooled samples

of cross-fostered and non-cross-fostered clutches (e.g.
Blomqvist, Johansson & Götmark, 1997; Selman &
Houston, 1996; de Neve et al., 2004) or eggs within
a clutch (e.g. Ricklefs & Peters, 1981; Lessells, 1986;
Williams, 1990). For variance measured at the within-
clutch level, again three designs were distinguished:
(a) Pure—either the mean egg size of the clutch was
removed from the predictor by centring or dyads
of eggs or groups of eggs were compared using a
paired test within clutches (e.g. Howe, 1976; Leblanc,
1987; Krist et al., 2004). All nestlings raised in a
nest were siblings. (b) Nest ID—size of individual
eggs was a predictor in the statistical model that
also included nest identity, usually as a random
factor (e.g. Ricklefs, 1984b; Rubolini et al., 2006b;
Whittingham, Dunn & Lifjeld, 2007). I confirmed
on real data (Krist et al., 2004, dataset available at
Dryad Digital Repository, doi:10.5061/dryad.1758)
that this approach leads to similar results as centring
(results not shown). However, this result may not be
generally applicable (see van de Pol & Wright, 2009)
so this study design was separated from the above
category. (c) Not siblings—Partial cross-fostering was
done but the statistical tests were performed within
broods by either of the two above approaches (pure or
nest ID, smaller sample size disallowed their separation
in this case; e.g. Ricklefs, 1984a; Rubolini et al., 2006a;
Bonisoli-Alquati et al., 2008). This means that egg size
variability was a mixture of the within-clutch and
between-clutch variability but offspring traits might be
affected by competition among nest-mates or parental
food-allocation decisions within broods as in the two
other within-clutch designs.

(9) Offspring stage—stage when the offspring traits were
measured. Levels: (a) Egg, (b) Hatchling (measured on
the day of hatching), (c) Nestling —measured while in
the nest or before capable of flight. This period was
defined as the time between age = 1 day and the mean
fledging age for the species multiplied by 1.25. The
multiplier was added to include cases when nestling
development was somewhat slower than the average
value for the species. (d) Post-fledging —offspring trait
was measured after the mean fledging age x 1.25.

(10) Response—offspring trait that was dependent on egg
size. These variables were recorded as they were
named in the papers and then grouped into several
broader categories. Levels: (a) Hatching success (hatched
versus unhatched eggs, the latter may include both
dead and infertile eggs; e.g. Murton, Westwood &
Isaacson, 1974; Clifford & Anderson, 2002; d’Alba &
Torres, 2007), (b) Egg fertility (infertile versus fertile eggs,
the latter includes both hatched and unhatched eggs;
e.g. Meathrel et al., 1993; Wiebe & Bortolotti, 1995;
Hernández et al., 2008), (c) Body mass (e.g. Schifferli,
1973; Ricklefs, 1984b; Reed, Turner & Sotherland,
1999), (d) Skeletal size—e.g. tarsus, head, culmen length
(e.g. Ankney, 1980; Weidinger, 1997; Isaksson, Uller &
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Andersson, 2006), (e) Condition—body mass controlled
for skeletal size or wing length (e.g. O’Connor, 1979;
Nager, Monaghan & Houston, 2000; Silva et al., 2007),
(f ) Wing/feather length—e.g. wing, tail, primary, rectrix
length (e.g. Stempniewicz, 1980; Järvinen & Ylimaunu,
1984; Badzinski et al., 2002), (g) Survival —chick
survival (e.g. Parsons, 1970; Lundberg & Väisänen,
1979; Rutkowska & Cichoń, 2005); included also are
cases where survival was scored as breeding success,
i.e. survival from egg laying to fledging (22 effects in 14
studies; e.g. Zieliński & Bańbura, 1998; Ramos et al.,
2006; Louzao et al., 2008), (h) Activity—e.g. locomotor
performance (Goth & Evans, 2004), swimming speed
(Anderson & Alisauskas, 2001), begging rate (e.g.
Rubolini et al., 2006a; Bonisoli-Alquati et al., 2007),
(i) Immunity—most often phytohemagglutinin (PHA)-
induced immune response (e.g. de Neve et al., 2004;
Velando, Torres & Espinosa, 2005; Krist, 2009), but
also maternal immunoglobulin G (IgG) levels and
others (e.g. Pihlaja, Siitari & Alatalo, 2006), (j) Growth

rate of mass (e.g. Nisbet, 1978; Amundsen, Lorentsen &
Tveraa, 1996; Styrsky, Dobbs & Thompson, 2000), (k)
Growth rate of skeleton (e.g. Bolton, 1991; Bitton, Dawson
& O’Brien, 2006; Bogdanova & Nager, 2008), (l)
Growth rate of wing/feather (e.g. Ricklefs, 1984a; Hipfner
& Gaston, 1999; Quillfeldt & Peter, 2000), (m) Life

history/sexual trait —traits measured on offspring, once
they themselves became adult, e.g. clutch size, laying
date, male ornaments (e.g. Cunningham & Russell,
2000; Parker, 2002; Krist, 2009).

(11) Number of variables—number of variables controlled
when egg-size effects were tested. This is the
sum of the covariates from the final model and
those variables which were controlled by sample
division into subgroups, e.g. males—females, first
year—second year, first eggs—second eggs.

(b) Individual-effect moderators—specific for some responses

(12) Offspring age—age (in days) when the offspring
traits were measured. Hatching day = 0. For some
responses the precise age was unknown. Mean
fledging age of the species was used as an estimate
of age at fledging, peak mass and asymptotic mass
from a fitted growth model. Age was coded for all
responses with the exception of hatching success and
egg fertility. Chick survival was measured between
two ages (observational interval hereafter). Except
for survival scored as breeding success or recruitment
probability, the observational interval started with
hatching in all but six cases. Due to the low variability
of the start of the observational interval, age at the
end of this interval was the only analysed variable.

(13) Causality of mortality—coded for hatching success
and chick survival. Levels: (a) Causal —egg-size
effects are likely to be causal (e.g. Lislevand et al.,
2005; Kontiainen et al., 2008; Krist, 2009). An
effort was made by the authors to control for

mortality factors that are unlikely to be affected
by egg size. For example, nests which failed due
to predation or abandonment were excluded from
analyses. (b) All losses—factors listed in the point
above were apparently not controlled for (e.g. Evans
et al., 2005; Budden & Beissinger, 2005; Fargallo
et al., 2006). (c) Not-causal —eggs/chicks died due to
mortality factors that are unlikely to be affected by egg
size, e.g. predation, abandonment (e.g. Hochachka,
1993; Boulton & Powlesland, 2008; Fernández &
Reboreda, 2008).

(14) Type of growth measurement—levels: (a) Absolute

increase—does not take into account initial size or
mass differences—growth rate is measured as a slope
of linear regression, or mass increment between
two successive ages (e.g. Nisbet, 1978; Stokland &
Amundsen, 1988; Gilbert et al., 2006). (b) Relative

increase—initial size or mass differences are taken
into account—growth rate is measured by a growth
constant from the logistic model, or chick mass is
given on a logarithmic scale (e.g. Ricklefs et al., 1986;
Weidinger, 1997; Samelius & Alisauskas, 1999).

(c) Species-specific moderators

In addition to this individual-effect coding, some species-
specific variables were recorded. These data were taken
from The Birds of the Western Palearctic (Cramp & Perrins,
1977–1994), The Birds of North America (Poole, Stettenheim
& Gill, 1993–2002), Handbook of Australian, New Zealand and

Antarctic Birds (Higgins & Peter, 1990–2006) and Handbook

of the Birds of the World (del Hoyo, Elliott & Sagartal,
1992–2006). For each species-trait combination all available
data in one of these handbooks was coded and their mean
was used for analyses.

(15) Development—developmental mode with levels: (a)
Altricial, (b) Precocial, (c) Semi-precocial or semi-altricial,
labelled hereafter as semi-precocial.

(16) Relative egg size—residuals from the regression (loge
egg volume = −1.305 + 0.782 × loge female body
mass, N = 162 species, R2 = 0.915, P < 0.001 ) were
used as an index of relative egg size. The results
would be qualitatively the same if the regression
was controlled for phylogeny (results not shown,
see Appendix S2 for phylogeny of included species
and methods of phylogenetic regression). Egg volume
was computed from mean egg length and breadth,
which was usually given in handbooks, according
to Hoyt’s (1979) formula. For four species only
fresh egg mass was available. For these species
egg volume was estimated based on a linear
regression of egg volume on egg mass (egg volume =
0.917 ×egg mass, no intercept, N =138 species, R2 =
0.998, P < 0.001). For Sterna hirundinacea neither egg
volume nor egg mass was available. Egg volume
was estimated from the regression of egg volume on
adult mass in five other Sterna species (egg volume =
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9.900 + 0.0856 × female body mass, N = 5, R2 =
0.978, P = 0.001).

(17) Clutch size.
(18) Fledging age.

(5) Data analyses

(a) Pseudoreplications, weighting schemes, and heterogeneity

For statistical testing Pearson’s r was transformed to Fisher’s
Zr-transform using the formula given in Lipsey & Wilson
(2001, p. 63). All presented values (least-square means and
confidence intervals) were converted back to correlations.

The smallest units of analyses were individual effect size
estimates which are called ‘‘estimates’’ hereafter. Since
several estimates per study were usually available, the
problem of pseudoreplications could arise. Two estimates
were considered as clearly pseudoreplicated if they were
based on the same sample and had the same combination of
levels of independent variables 1 to 14 as listed above or if
they differed only in variable 11. In those cases one of two
selections was made. First, only one estimate was selected
(blindly with respect to effect size) for analyses and the other
was excluded as pseudoreplication. This was the case, for
example if (1) two traits describing skeletal size such as tarsus
and culmen length were tested with the same combination
of levels of independent variables in the same study or if
(2) the test was performed both on subsamples such as years
(e.g. Williams et al., 1993b) or laying orders (e.g. O’Connor,
1979) and on the composite sample. In this latter case, the
test on the composite sample was always excluded to avoid
the problem known as Simpson’s paradox (see Borenstein
et al., 2009, p. 303–309). Second, some estimates were based
on multiple contrasts. For example, survival to fledging was
contrasted between groups of offspring hatched from small,
medium, and large eggs. Three contrasts were computed
(small–large, small–medium, medium–large) but they were
not independent since each egg size category was involved in
two contrasts. In this case the three estimates were merged
into one composite estimate. A weighted mean was used,
where weight was an inverse variance of the individual
contrast. Sample size for this composite measure was the
sum of the sample sizes in the three categories of eggs.

Despite the above treatments, estimates from the same
study are still not independent. To take this non-
independence into account, the study or the species was
included as a random factor in the statistical models.

Another problem in meta-analysis is that estimates based
on a large sample size should have greater weight than those
based on a small sample size since the sampling error is
greater in the latter case. Two types of weighting are used
in meta-analysis—the fixed-effects model and the random-
effects model (Borenstein et al., 2009, p. 61). The fixed-effects
model takes into account within-study variance only. As this
model expects only one true effect size that is common to each
study, it may be called the common-effect model (Borenstein
et al., 2009, p. 61). This notation will be used hereafter. In
most instances the random-effects model is more appropriate

(Borenstein et al., 2009, p. 86) since it also takes into account
between-study variance, which is likely to be non-trivial in
ecological studies. However, random-effects models are more
difficult to compute. The main aim of the present study was
to find factors, called moderators in meta-analysis, that affect
the strength of the relationship between egg size and offspring
traits. This type of meta-analysis is sometimes called meta-
regression and the methods to solve it are not implemented in
software specially developed for meta-analysis. This special
software including Comprehensive Meta-analysis and MetaWin, is
more oriented to the computation of mean effect size rather
than on taking moderator effects into account and allows
only one covariate in the computation of the mean effect
size. Therefore, SAS software was used for analyses (SAS
Institute, 2003). SAS enables computation of both fixed and
random-effects models in meta-analysis while offering the
possibility to control for many covariates (van Houwelingen,
Arends & Stijnen, 2002). Unfortunately, in the case of the
present analysis, sample size was too large for a random-
effects model to be computed in combination with the large
number of covariates as indicated by the ‘‘Out of memory’’
statement in the Log of SAS. Therefore two other analyses
were conducted.

First, common-effect analysis was conducted where
estimates were weighted by the inverse of their variance.
This inverse variance is equal to n − 3 for effect size
expressed as Fisher’s Zr (Lipsey & Wilson, 2001, p.72). In the
case of dichotomization and range enhancement/restriction,
the variance of the estimate had to be adjusted
according to the formula given in Borenstein et al. (2009,
p. 343). Second, unweighted analysis was conducted for
the following reason. The preferred method—the random-
effects model—weights estimates by the sum of the within-
study variance and between-study variance when the latter
is the same for all estimates (Borenstein et al., 2009, p. 73).
Consequently, the random-effects model weights estimates
more equally than common-effect meta-analysis but less
equally than in unweighted analyses where weights are
the same for all estimates by definition. Consequently,
good congruence between common-effect and unweighted
analyses would also suggest that random-effects analysis
would provide similar results. Some recent meta-analyses
used solely unweighted analyses (Schoech & Hahn, 2008).

Heterogeneity between effect-size estimates was assessed
with the Q test and I 2 statistic. Q is the weighted sum
of squares that is distributed as chi-squared with degrees
of freedom equalling the number of estimates minus one
(Borenstein et al., 2009, p. 109–110). I 2 is the proportion of
the observed variance that reflects real differences in effect
sizes (Borenstein et al., 2009, p. 117).

(b) Model selection and collinearity

First a random part of the model was selected. Either the
study or the species was used as the subject within which both
the intercept and the slopes of the independent variables were
nested. The best covariance structure was selected according
to Akaike’s information criterion (AIC). It was not possible to
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include both the study and the species in the same model if the
slopes varied within subjects. Such a model would involve
the computation of many random effects, some of which
were crossed. Crossed random effects are more difficult to
estimate than nested ones (West, Welch & Gałecki, 2007,
p. 14). This probably explains why SAS was unable to fit this
model. In common-effect weighting schemes the best models
include the study as a subject. In unweighted analyses the best
models include the species as the subject. Recently, methods
have been proposed on how to include all phylogenetic
information into meta-analysis (Adams, 2008; Lajeunesse,
2009). However, it may be difficult, if not impossible, to
include phylogeny in such complex models as those fitted
here. Therefore I did not control for phylogeny and the
results should be viewed with this caveat in mind.

After a random part of the model was selected, the fixed
part was selected. Starting with a full model that included
the independent variables numbered 1-11 and 15-17 non-
significant variables were eliminated and the final model
included only the significant ones.

Large correlations between independent variables cause
problems in estimation of regression coefficients and their
standard errors. Models that include predictors with variance
inflation factors (VIFs) less than 10 (Quinn & Keough, 2002)
or 5 (Zuur, Ieno & Smith, 2007) are usually considered
to give acceptable results although also more stringent
criteria have been suggested (Graham, 2003). For each
independent variable its VIF was estimated by the sequential
method described in Zuur et al. (2007, p. 469). The structure
of the models searching for predictors’ VIFs had to be
simplified (no random factors and no nested structure in
the dependent and in some cases also in the independent
variable). Consequently, resulting VIFs may be considered
only as estimates of the true VIF in more complex models.
Estimated VIFs were always less than 5 (see Tables 3, 4).
Therefore, results of the presented models are unlikely to
be greatly affected by multicollinearity between independent
variables.

(c) Additional models for some responses

For some of the responses additional models were fitted.
Since the two weighting schemes provided similar results for
models based on all data, these additional models were fitted
for specific responses with the common-effect weighting
scheme only. These models included variables that were
significant in the model based on all data and the variables
12-14 as the factor of interest. For simplicity, they included
only the intercept in their random parts.

Whether chick age affects the correlation between egg size
and offspring trait was tested on the four responses with the
largest sample size (chick survival, body mass, skeletal size,
and wing/feather length) in the nestling stage. All cases where
survival was recorded as breeding success were excluded from
the analysis of age-effect on chick survival. The prediction of
age-effect differs for egg size (decreasing effect with age) and
parental quality (increasing with age). Ideally, this should
be tested as an interaction effect between the age and the

predictor. This was possible to do only with nestling body
mass, where sufficient data for parental quality existed. For
the other three responses, estimates based on parental quality
were excluded from the dataset. The distribution of chick age
was skewed to the right. Data points of the predictor variable
that depart considerably from the rest of the distribution
may strongly affect regression results. Therefore, a second
set of models was fitted without points that departed more
than 3 S.D. from the mean chick age (see Grafen & Hails,
2002, pp. 40–42). Chick age relative to fledging age might
be a more relevant measure of chick age than the absolute
age of the chick. Therefore, a third set of models was
fitted in which chick age was transformed to relative age
(relative age = chick age/fledging age of the species).

Whether causality of mortality affects the relationship
between egg size and hatching success or nestling survival was
also tested. Finally whether the type of growth measurement
affects the correlation between egg size and rate of increase
in chick mass was also tested.

(6) Publication bias

Publication bias is a potential problem for both narrative and
meta-analytic reviews (Møller & Jennions, 2001; Borenstein
et al., 2009). Several methods were employed to deal with
publication bias. First, bias was minimized in the included
studies by (1) a comprehensive search of the literature which
also included non-English studies (see Table 1). Without their
inclusion the review might be especially prone to bias (Møller
& Jennions, 2001; Gates, 2002); (2) contacting authors for
additional details if published studies did not contain enough
information to enable computation of effect size, which was
most often the case if results were non-significant; (3) not
excluding studies for which all necessary information to
compute effect size was unobtainable. Instead the size of
these effects was estimated and an analysis was conducted
with and without these estimated effect sizes (i.e. sensitivity
analysis; Gates, 2002).

Second, whether the included effect sizes are likely to be
biased was assessed. (1) For each study, two variables that
might reveal bias were coded. First, it was coded if the title
of the study contained the phrase ‘‘egg size’’ or some similar
term. In these studies egg-size effects are likely to be the main
focus of the research. If publication bias was substantial,
effect sizes in these studies would be larger than in studies
less focused on egg-size effects. Second, year of publication

Table 1. Number of considered and used studies ordered by
the language of publication.

Language Considered Used

English 582 278
Russian 20 0
Chinese 15 2
German 15 0
French 7 1
Other 10 languages 27 2
Total 666 283
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1635 (283)

170 (18)

645 (137)

922 (139)

238 (58)

242 (47)

1563 (241)

251 (109)

276 (126)

1224 (180)

54 (19)

Fig. 3. Effect size for four independent variables that
significantly explained variability in effect sizes. Independent
variable ‘‘Variance level’’ was significant only in the unweighted
analysis. Displayed are the least-square means (LSM) ± 95%
confidence limits (CL) for each level of the independent variable.
Values are controlled for independent variables that were
retained in the final model. Number of estimates and studies (in
parentheses) is given for each level of the independent variable.
Solid circles: LSM from models with a common-effect weighting
scheme. Open circles: LSM from unweighted analyses.

was also coded. It is known that relationships often fade
with time which is likely to be due to publication bias
(Jennions & Møller, 2002). (2) A funnel plot was constructed
to assess whether there was a lack of small or negative
effect sizes in small-sample size studies which would be
one common form of publication bias (Møller & Jennions,
2001; Borenstein et al., 2009). Residuals from the final model
that included significant moderators of effect size were used
for the funnel plot. If raw effect sizes were plotted, their
substantial heterogeneity caused, for example, by different
stages in the offspring life cycle and different responses (see
Figs 3, 4), might cause asymmetry in the funnel plot even if
no publication bias existed.

(7) Interpretation of effect size

For each effect size several criteria can be evaluated.
(1) Direction—whether the relationship between egg size
and offspring quality indicator is positive or negative.
(2) Absolute magnitude—according to Cohen’s (1988,
pp. 77–81) convention, effect size is considered as large
if r = 0.5, medium if r = 0.3, and small if r = 0.1. Møller &
Jennions (2002) have shown that in the field of ecology and
evolutionary biology the mean correlation between the major
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Fig. 4. Effect size for the last significant independent
variable—response nested within the offspring stage. Displayed
are the least-square means (LSM) ± 95% confidence limits (CL)
for each level of the independent variable with the exception of
hatchling immunity and activity since these LSM were based
on only one estimate. Values are controlled for independent
variables that were retained in the final model. Number of
estimates and studies (in parentheses) is given for each level of
the independent variable. Solid circles: LSM from models with
a common-effect weighting scheme. Open circles: LSM from
unweighted analyses.

factor of interest and the response variable is r = 0.19. These
values can be used as yard-sticks to place results from the
present study into a broader context. (3) Precision—effect sizes
are accompanied by confidence intervals; those with narrow
confidence intervals are estimated with high precision. (4)
Statistical significance—effect sizes whose confidence intervals
do not overlap zero are considered to be statistically
significant. (5) Relative magnitude—effect sizes may differ
among levels of moderator variables. Inference may be
made by statistical test of the moderator variable and by
visual inspection of figures with plotted effect sizes.
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Table 2. Taxonomic distribution of effects included in the meta-
analysis. Values are numbers of species, studies, and estimates.

Order Species Studies Estimates

Charadriiformes 42 72 493
Passeriformes 41 91 515
Anseriformes 17 35 242
Procellariiformes 15 18 235
Falconiformes 9 16 65
Pelecaniformes 8 11 79
Gruiformes 8 10 60
Sphenisciformes 6 10 53
Other 10 orders 16 20 65
Total 162 283 1805

III. RESULTS

(1) Description of dataset

In sum, the three sources of data (electronic databases,
reference lists and accidentally found studies) provided
approximately 5000 candidate studies. If the study was
carried out on bird species and published in a non-poultry-
science journal, I read its abstract. Based on the reading
of the abstracts, 666 studies were considered as containing
potentially relevant data and their full texts were searched.

Of these studies, 297 contained data of interest (i.e. passed
through selection criteria 1–4) but 14 were excluded because
of problematic design, analyses etc. Appendix S1 provides a
list of excluded studies and the reasons for their exclusion.
Consequently, the final number of studies was 283 (also listed
in Appendix S1). These studies contained 2318 estimates.
After the exclusion of pseudoreplications, the final sample of
estimates was reduced to 1805. These studies were carried out
on 162 species distributed among 18 orders (see Appendix
S2). The vast majority of data was obtained on a few
waterfowl orders and passerines (Table 2).

The first study was published in 1970 (Parsons, 1970)
and the number of published studies increased throughout
the years (Fig. 1). This increase was steeper than the
general increase in the number of scientific publications,
documenting a proportional increase of interest in egg-
size effects mainly during the period 1970–2000 (Fig. 1).
Unfortunately, the growing interest was not accompanied by
a more rigorous publication of effects. On the contrary, the
number of studies that published incomplete effect sizes rose
disproportionately in the last decade (Fig. 1).

Effect sizes were significantly heterogeneous (Q =
20224.7, d.f. = 1804, P < 0.001). A high proportion of
observed variance reflected real differences in effect sizes
(I 2 = 91.1%). Even after the random effect of the study
or species was accounted for, effect sizes still remained
substantially heterogeneous (see Figs 3, 4).

(2) Effect of moderators in the two weighting
schemes

In both the common-effect weighting scheme and the
unweighted analyses the best covariance structure included

slopes of independent variables nested within subjects. The
subject was the study in the case of the common-effect
weighting scheme and the species in the unweighted analyses.
These models were better according to AIC than either the
models with only a random intercept or those lacking the
random part at all.

Despite different weighting methods and subjects within
which slopes were allowed to vary, the two models provided
quite similar results for fixed variables. In both models, the
predictor, environment, offspring stage, and the response
that was nested in the offspring stage were found to be
significant (Tables 3, 4). The least-square means (LSM)
for levels of these categorical variables were also in good
congruence between the two models (Figs 3, 4), although
generally unweighted analyses provided a somewhat lower
LSM than the common-effect weighting scheme.

Offspring quality was more correlated with egg size from
which the young hatched than with egg size that was laid
in territories on which cross-fostered young were raised (a
surrogate of parental quality), although the latter relationship
was also significantly positive (Fig. 3).

Studies performed in captivity found a larger effect size
than those carried out in the wild. In theory this is expected at
the hatchling stage since hatchlings may be weighed before
receiving any food in captivity (i.e. usually hatched in an
incubator). On the other hand, effect size in the nestling
stage is expected to be larger when food resources are scarce
(McGinley et al., 1987; Smith & Bruun, 1998) which is more
typical in the wild. I tested for the possibility that the effect of
the environment depends on the offspring stage by inclusion
of the interaction between the two variables in the final
model. This interaction was not significant (common-effect
model: F3,396 = 2.15, P = 0.094 ) and the least-square means
revealed similar or larger effect sizes in captivity compared
to the wild regardless of offspring stage (stage: LSM for
effect size in captivity, LSM for effect size in the wild; egg:
0.014, 0.032; hatchling: 0.619, 0.450; nestling: 0.251, 0.106;
post-fledging: 0.233, 0.091). Unweighted analysis produced
a similar pattern (results not shown).

Unsurprisingly, hatching was the stage when effect sizes
were the largest with absolute magnitude classified as ‘‘large’’
according to Cohen’s (1988) convention (see Figs 3, 4). The
lowest effect size was found for the egg stage (hatching
success, egg fertility), where effects were weak, although
some of them were statistically significant due to large sample
size (Figs 3, 4). Effect sizes were weak to medium for both
nestling and post-fledging stages, although in the latter case
effect sizes were accompanied by much wider confidence
intervals due to a smaller sample size (Figs 3, 4).

The largest effect of type of response was evident in the
hatchling stage when egg size was much more correlated
with body mass than with body condition, and especially
with skeletal size and wing/feather length (Fig. 4). In the
nestling stage, effect sizes were similar for all morphological
traits, lower for the survival and growth rates and non-
significant for activity and immunity traits (Fig. 4). In the
post-fledging stage effect sizes for all traits were similar but
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Table 3. Results of common-effect weighing scheme: effects of all considered predictors on effect size. For the fixed part of the
model both significant and non-significant predictors are shown. The latter are presented in the order they were eliminated
from the model. A random part of the model is presented in its final form. The subject is study. (Random slopes nested within
study). F/Z = test statistic, NDF = numerator degrees of freedom, DDF = denominator degrees of freedom, S.E. = standard error,
estVIF = estimated variance inflation factor.

F/Z NDF DDF P Parameter S.E. estVIF

Random part
Predictor 2.19 0.014 0.00484 0.00221
Study design (Variance level) 2.51 0.006 0.00951 0.00379
Offspring stage 4.43 <0.001 0.0206 0.00464
Response (Offspring stage) 4.11 <0.001 0.0101 0.00247
Residual 23.48 <0.001 1.811 0.0771

Fixed part
(a) Final model
Intercept
Predictor 25.64 1 36.6 <0.001 1.14
Environment 20.34 1 414 <0.001 1.32
Offspring stage 11.08 3 572 <0.001 2.21
Response (Offspring stage) 13.60 19 250 <0.001 1.44
Year of publication 9.11 1 278 0.003 −0.00420 0.00138 1.11

(b) Eliminated terms
Title 0.01 1 298 0.917 1.49
Study design (Variance level) 0.38 6 134 0.892 3.02
Relative egg size 0.03 1 329 0.863 0.00736 0.0427 3.85
Developmental mode 1.15 2 300 0.319 1.93
Clutch size 1.26 1 362 0.262 0.00513 0.00457 1.33
Variance level 2.11 2 130 0.125 1.33
Number of variables 3.02 1 434 0.083 −0.0127 0.00730 1.26

Table 4. Results of unweighted analyses: effects of all considered predictors on effect size. For the fixed part of the model
both significant and non-significant predictors are shown. The latter are presented in the order they were eliminated from the
model. A random part of the model is presented in its final form. The subject is species. (Random slopes nested within species).
F/Z = test statistic, NDF = numerator degrees of freedom, DDF = denominator degrees of freedom, S.E. = standard error,
estVIF = estimated variance inflation factor.

F/Z NDF DDF P Parameter S.E. estVIF

Random part
Predictor 1.03 0.150 0.00190 0.00183
Variance level 3.19 <0.001 0.0163 0.00511
Offspring stage 2.85 0.002 0.0167 0.00586
Response (Offspring stage) 3.62 <0.001 0.0141 0.00390
Residual 24.30 <0.001 0.0578 0.00239

Fixed part
(a) Final model
Intercept
Predictor 33.53 1 22.1 <0.001 1.23
Variance level 8.09 2 115 <0.001 1.19
Environment 6.87 1 327 0.009 1.57
Offspring stage 7.29 3 506 <0.001 2.39
Response (Offspring stage) 8.79 19 278 <0.001 1.46
Number of variables 4.16 1 1210 0.042 −0.0158 0.00775 1.20

(b) Eliminated terms
Title 0.02 1 791 0.880 1.33
Study design (Variance level) 0.49 6 872 0.818 2.65
Developmental mode 1.57 2 173 0.210 2.78
Clutch size 1.03 1 207 0.312 0.00659 0.00650 1.65
Year of publication 2.21 1 962 0.138 −0.00192 0.00130 1.41
Relative egg size 3.21 1 171 0.075 −0.0681 0.0380 1.29
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significant only for survival because of the larger sample size
in this variable (Fig. 4).

The two weighting schemes disagreed on the significance
of variance levels, which were found to be significant in
unweighted analysis but non-significant in the common-
effect one. They also differed in assessing the effect of
continuous variables: in the unweighted analysis the ‘‘number
of variables’’ was retained in the final model while the ‘‘year
of publication’’ was retained in the common-effect model.
However, note that all these variables that were retained in
one but were eliminated from the other model, were only
eliminated at the end of the backward elimination procedure
(Tables 3, 4).

Both weighting schemes agreed on the non-significance of
all species-specific variables (developmental mode, relative
egg size, clutch size), title of the study, and study design
nested within variance levels (Fig. 5; Tables 3, 4). As the two
weighting schemes provided closely similar results in the main
statistical tests as described above, additional statistical tests
were performed using only the common-weighting scheme.

(3) Additional moderators for some responses

Effect size did not change significantly as the young grew
older if the response was chick survival or wing/feather
length but decreased if the response was skeletal size or
body mass (Table 5; Fig. 6). Models without extreme data
points and with relative chick age fitted instead of actual
age provided both qualitatively and quantitatively closely
similar results (results not shown). A decrease in effect size
on body mass with age was steeper if the predictor was
egg size (slope in Zr units = −0.00625) than parental quality
(slope = −0.00156, see Fig. 6B; test of this interaction:
F1,456 = 7.54, P = 0.006).

A visual inspection of the plotted data suggested a non-
linear, convex effect of chick age on the magnitude of the
effect size on body mass. First, most residuals, after the age
of 50 days, were positive (Fig. 6B). Second, the convex shape
would be even more evident if the data on hatchlings were
included: the LSM for the body mass of hatchlings is about
r = 0.7 (Fig. 4), while the intercept for the data based on
nestlings only is about r = 0.4 (Fig. 6B). Third, effect size
was still positive in the post-fledging stage (Fig. 4). The last
point also holds for chick skeletal size. The hypothesis about
the non-linear relationship was only set post hoc, therefore the
formal test was not performed. Instead, the linear lines were
divided into two parts: the solid region extending over the
chick ages with most of the data while the dotted line extends
to the high end of the x axis where data were more scarce
and therefore prediction was less reliable (Fig. 6).

The type of mortality did not significantly affect the effect
size for either hatching success (F2,113 = 0.61, P = 0.544;
level: LSM, number of estimates, number of studies: all
losses: 0.070, 107, 20; causal: 0.034, 99, 57; uncausal: 0.057,
36, 12) or chick survival (F2,140 = 2.50, P = 0.086; all losses:
0.268, 96, 54; causal: 0.192, 93, 38; uncausal: 0.152, 15, 3).
The same was true for the type of measurement of the growth
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Fig. 5. Effect size for independent variables that did not
significantly explain variability in effect sizes. Displayed are
the least-square means (LSM) ± 95% confidence limits (CL) for
each level of the independent variable. Values are controlled for
those independent variables that were retained in the model at
the time of exclusion of the independent variable in question.
The number of estimates and studies (in parentheses) is given for
each level of the independent variable. Solid circles: LSM from
models with a common-effect weighting scheme. Open circles:
LSM from unweighted analyses.

rate of mass (F1,36.7 = 2.18, P = 0.148; absolute increase:
0.081, 43, 21; relative increase: 0.009, 40, 21).

(4) Publication bias

(a) Avoidance of publication bias

Most of the studies considered as potentially containing
data were written in English but the number of non-
English-written studies was also substantial (Table 1). The
consideration of non-English-written studies was intended to
reduce publication bias (Gates, 2002). However in this study,
bias would not arise if the search was restricted to English-
written studies since the number of non-English-written
studies that contained data was very small (Table 1).
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Table 5. Tests of the relationship between nestling age and effect size for four nestling traits. Negative parameter (regression
coefficient) means that the correlation between egg size and nestling trait decreases as the young grow older. The body mass model
included interaction between predictor (egg size or parental quality) and chick age. All other tests were only based on egg size as
a predictor. See text for further details. F = test statistic, NDF = numerator degrees of freedom, DDF = denominator degrees of
freedom, S.E. = standard error.

Nestling trait F NDF DDF N P Parameter S.E.

Survival 0.73 1 75.8 204 0.396 −0.000380 0.000445
Body mass 14.16 1 524 539 <0.001
Skeletal size 14.41 1 93.3 111 <0.001 −0.00490 0.00129
Wing/feather length 0.14 1 116 120 0.708 0.000752 0.00201
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Fig. 6. Relationship between nestling age and effect size of four traits for which sufficient sample sizes were available. Solid circles:
effect sizes where predictor was egg size. Open circles: effect size where predictor was parental quality (i.e. egg size laid originally on
territory where cross-fostered nestlings were raised). Fitted lines are predicted from models with a common-effect weighting scheme.
Solid part of lines: 90% of data is in this range of the x axis. Dotted part of lines: only 10% of data in this range of the x axis.
Three outliers are not displayed for nestling survival with coordinates [275, −0.061], [275, 0.123], and [135, 0.236], all obtained on
albatrosses. One outlier is not displayed for skeletal size, coordinates [12, −0.800], whose effect size is based on N = 7. See Table 5
for statistical tests.

Of 297 studies that contained relevant data, all informa-
tion necessary to compute effect size and its variance was
published in 158 studies while only incomplete information
was available in 139 studies (Fig. 1). Because of poor
experimental design or pseudoreplication, three studies with
complete information and two with incomplete information
were excluded. An attempt was made to obtain missing

information from the authors of the 137 suitable studies
with missing information. Of these, 62 studies provided the
necessary information. The information that was provided
by the authors on request is given in red italics in Appendix
S3, sheet ‘‘all data’’. Effect sizes provided by authors on
request were smaller (weighted mean r = 0.064, N = 120)
than those published (r = 0.210, N = 1554, F1,1672 = 48.52,
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P < 0.001), as was found also in other meta-analyses
(Cassey et al., 2004). For the remaining 75 studies, necessary
information was not obtained because of the following
reasons: 14 authors were not located, 20 did not have
the missing information, 18 gave only initial responses, and
23 authors did not respond at all. Fortunately I was able to
estimate effect size or its variance (see above for estimation
methods) in 66 of these studies. Consequently, only nine
more studies from all analyses had to be excluded and these
studies did not seem to have extremely large or small effect
sizes, so their exclusion is unlikely to bias the results.

(b) Assessment of remaining bias

The main analyses were performed with both the exact
known and the estimated effect sizes. These analyses were
repeated with the exact known effect sizes only to look at
the sensitivity of the results to inclusion of the estimated
effect sizes. The results of both models with common-effect
weighting and no weighting showed that the results were
robust. Only three differences were found when restricted
datasets were used instead of the complete one. First, both
number of variables and publication years were significant
variables in unweighted models. Second, the variance level
was no longer a significant variable in unweighted analysis
(P = 0.108). Third, most effect sizes expressed as the least-
square means were greater by 0.01 − 0.05 in the restricted
dataset as compared to the full dataset. As most conclusions
would be the same if a restricted dataset was used, this
meta-analysis is not very sensitive to publication bias.

Low publication bias is also suggested by the non-
significance of the title of the study (Tables 3, 4; Fig. 5)
while some upper-bias is indicated in early studies as effect
size decreased with the year of publication (Tables 3, 4).
However, this might be partly caused by greater control
of confounding variables in more recent studies as a
positive correlation between the year of the study and the
number of controlled variables exists (r = 0.278, P < 0.001,
N = 1805). The funnel plot does not indicate publication bias
with respect to the sample size upon visual inspection (Fig. 2).
However, Spearman rank correlation between residual effect
size and inverse variance of effect size is negative and
significant (rs = −0.096, P < 0.001, N = 1805). Therefore
the ‘‘trim and fill’’ method (Duval & Tweedie, 2000) was
used to estimate number of estimates missing on the bottom
side of the funnel plot. The L0 estimator suggested that only
three estimates were missing. Filling these three estimates
with very small weight had negligible effect on the overall
mean effect size (results not shown).

IV. DISCUSSION

Egg size was positively correlated with offspring quality
across all stages in the offspring life cycle—from egg
to post-fledging, as well as across most studied offspring
traits. This analysis provides strong support for the offspring
size—quality relationship since it is based on a quantitative

analysis of a very large number of primary studies. The results
are unlikely to be much affected by publication bias because
all published, non-significant results also were included.
Consequently, there was little evidence for a publication
bias among the included studies. Furthermore, the trim and
fill method suggests that only a few studies with small effect
sizes were unpublished. This might be because positive egg-
size effects are predicted by theory, and finding no effect or
even a negative one is of interest and therefore reported by
authors. One exception may be when the response variable is
measured on a binary scale, such as hatching success or chick
survival. If nearly all eggs hatch/do not hatch or all chicks
survive/die, authors may not test for the relationship between
egg size and mortality as it is clear that this correlation will
be weak (see e.g. Bitton et al., 2006; van de Pol et al., 2006).
So estimates of effect sizes on binary traits are likely to be
somewhat upper biased.

(1) Cross-fostering and post-hatching care

Birds take care of their offspring after hatching. In theory, this
could be another source of upper bias in estimates of effect
sizes since parents that are able to lay large eggs may also be
able to provide more food for their chicks. The correlation
between egg size and chick quality might arise through the
correlation of these two variables with a third, unmeasured
one, such as territory or parental quality (Birkhead &
Nettleship, 1982; Bolton, 1991). By cross-fostering clutches
randomly between nests this latter correlation is broken and
the independent effects of parental quality and egg size may
be estimated simultaneously (Amundsen & Stokland, 1990;
Reid & Boersma, 1990).

The present review led to an unexpected result—studies
that employed a cross-fostering design did not find weaker
effect sizes than observational studies despite the fact that the
former also found a positive correlation between parental
quality and offspring performance. This apparent paradox
may be explained in two ways. First, the authors of the cross-
fostering studies might select different subjects and better
control the confounding variables than was done in the
observational studies. This might increase the estimate of
effect size in the former set. In other words, a comparison of
cross-fostering and observational studies has an observational
nature since the treatments were not allocated at random.
Moreover, selection of nests within a treatment is also not
random in the case of the cross-fostering design which
requires dyads of nests. Second, parental provisioning and
offspring demands may be coadapted (Wolf & Brodie, 1998;
Kölliker, Brodie & Moore, 2005; Lock et al., 2007). By cross-
fostering, the coadapted phenotypes are disassociated which
might induce changes in parental provisioning behaviour.
Under some conditions, such post-hatching effects can be
ascribed to the effect of the size of the cross-fostered eggs (see
Krist & Remeš, 2004).

Although cross-fostering decouples the correlation
between egg size and parental quality, it does not ensure
zero correlation between egg size and parental post-hatching
care. Such correlations may arise if parents plastically adjust
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their provisioning behaviour to the offspring state that is
co-determined by egg size (Krist & Remeš, 2004). Therefore,
it is important to include the intensity of post-hatching care
as a covariate in the analysis of pre-hatching effects (Krist &
Remeš, 2004), as well as pre-hatching effects when testing
for post-hatching ones (Russell et al., 2007). So far, only a few
studies have directly tested for the covariation between egg
size and post-hatching parental care and its effect on offspring
quality (Quillfeldt & Peter, 2000; Russell et al., 2007; Krist,
2009). However, one of the indirect findings from this review
suggests that these correlations may generally be either weak
or non-existent. If parents compensated for differences in
pre-hatching investment by differential provisioning, effect
size should be smaller in altricial compared to precocial
species (Magrath, 1992; Williams, 1994). However, the
developmental mode did not predict effect size.

(2) Between-clutch versus intraclutch effects

There are several reasons why the level at which the variance
of egg size is measured should affect the strength of effect size
on offspring quality. The first is statistical. All other things
being equal, less variance in the independent variable means
a lower effect size (Hunter & Schmidt, 2004, pp. 37–39).
In birds, egg size is variable mainly between clutches with
only about 30% intraclutch variation (Christians, 2002).
Consequently, for this statistical reason, effect size should
decrease in the order: total > between clutch > intraclutch
variance used. The second reason is ecological and more
interesting. Sibling rivalry often leads to monopolization
of resources by the larger siblings and starvation or
even death of the smaller one (Mock & Parker, 1997;
Forbes & Wiebe, 2010). Furthermore, parents may actively
enhance or mitigate within-brood competitive asymmetries
by differential food allocation (Krebs, 2002). The third reason
is a quantitative-genetic one. Unlike between-clutch studies,
intraclutch ones do not suffer from correlations of egg size
with direct genetic effects (Krist & Remeš, 2004). Most often,
this correlation is probably positive (see Riska, Rutledge &
Atchley, 1985; McAdam et al., 2002) and therefore causes
an upper bias in the estimates of egg-size effects between
clutches (Krist & Remeš, 2004). On the contrary, although
egg size may be correlated with other pre-hatching effects
in all non-manipulative designs (Krist & Remeš, 2004) this
correlation may be higher in within-clutch compared to
between-clutch settings (see Reed et al., 2009; Kozlowski &
Ricklefs, 2010) and therefore cause upper bias in egg-size
effects in the former compared to the latter design.

In the present study, effect size at the within-brood
level was smaller than those at total or between-broods
levels, which suggests a role of smaller egg-size variation or
compensating effects of parental provisioning, or increased
bias in the latter two designs due to a confounding direct
genetic effect. Partial resolution of these hypotheses is offered
by studies that performed partial cross-fostering, increasing
egg-size variation within nests, and then looked at the
relationship between egg size and offspring performance
within broods. If egg-size variation was highly important,

effect size should be higher in such a setting compared to a
pure within-clutch design. This was not the case. However,
the number of these studies was quite limited. Therefore the
conclusion, that variation is of minor importance, is weak.
The remaining two hypotheses are even more difficult to
assess at present. The correlation between the egg size and
the direct genetic effects did not upwardly bias the results
of the one between-clutch study (Krist, 2009), although this
effect is hypothesized to exist in frogs (Ficetola & de Bernardi,
2009; but see Dziminski & Roberts, 2006). No study looked
at within-brood egg-size effects controlled for parental food
provisioning. This remains a challenge for future research.

(3) Environmental quality and effect size

Effect size was generally larger in captive compared to wild
populations. The strength of the selection on egg size is
expected to differ between environments which ultimately
may explain differences in egg sizes among populations
and species (Fox & Czesak, 2000), although other factors
often play an even larger role (Moles et al., 2005; Martin
et al., 2006). Contrary to my finding of larger effect size
in captivity, theoretical models usually assume a greater
dependence of offspring fitness on egg size in harsh, more
competitive environments (Brockelman, 1975; Parker &
Begon, 1986; McGinley et al., 1987). Empirical studies in
non-avian taxa that manipulated the quality of the offspring
environment generally supported this assumption in plants
(Rey et al., 2004; Quero et al., 2007; review in Donohue
& Schmitt, 1998), invertebrates (Fox, 2000; Agosta, 2008;
Allen, Buckley & Marshall, 2008; review in Fox & Czesak,
2000), fish (Hutchings, 1991; Einum & Fleming, 1999;
Bashey, 2006), and amphibians (Parichy & Kaplan, 1992;
Dziminski & Roberts, 2006). However, some studies found
the opposite pattern in amphibians (Semlitsch & Gibbons,
1990), reptiles (Svensson & Sinervo, 2000), and mammals
(Oksanen et al., 2003).

Given the theoretical importance of the concept of
selection varying with environmental quality, a surprisingly
limited number of studies have dealt with this problem
in birds. A few observational studies found a stronger
relationship between egg size and offspring quality in
harsh, more competitive environments (Smith & Bruun,
1998; Styrsky et al., 1999; Garant et al., 2007). Only two
studies were specifically designed to solve this question and
manipulated the offspring post-hatching environment either
by food supplementation (Styrsky et al., 2000) or brood-size
manipulation (Bonisoli-Alquati et al., 2008). Both of these
studies did not find a difference between effect size in good
versus poor conditions. If the lack of an effect of environmental
quality is a general pattern in birds, the finding of larger effect
sizes in the less-competitive conditions in captivity could be
explained by better control of confounding variables.

(4) Components of offspring fitness and types
of studied traits

Egg size was positively correlated with nearly all studied
traits across all stages in the offspring life cycle. Does this
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finding mean that egg size has a positive effect on offspring
fitness? In iteroparous organisms, such as birds, fitness has
three main components: juvenile survival (survival from egg
to sexual maturity), adult survival, and fecundity (Stearns,
1992; Roff, 2002).

Egg size likely affected the first component—juvenile
survival. Chicks hatching from large eggs had enhanced
components of juvenile survival such as hatching success and
nestling survival. They were also significantly larger and had
slightly enhanced immunity. These traits often are predictive
of post-fledging survival (tarsus length: Kruuk et al., 2001;
body mass or condition: Merilä, Kruuk & Sheldon, 2001;
Braasch, Schauroth & Becker, 2009; Tilgar et al., 2010; wing
length: Morrison et al., 2009; immunity: Cichoń & Dubiec,
2005; Moreno et al., 2005). Chicks hatching from large eggs
also grow faster. This might also be positively related to
juvenile survival as fast growing shortens the nestling period
during which the young are vulnerable to nest predation
(Remeš & Martin, 2002), although rapid growth also has
costs (Metcalfe & Monaghan, 2001). In sum, these pieces of
evidence suggest that egg size enhances juvenile survival but
the exact magnitude of this effect is unknown since only a
few studies have followed offspring up to sexual maturity.

The lack of long-term studies also means that we have
nearly no knowledge of egg-size effects on the two other
components of fitness that are manifested in adults. Only four
out of 283 (1.4%) studies tested for the relationship between
egg size and sexual or life-history traits that are related to
female fecundity or male mating success (Cunningham &
Russell, 2000; Parker, 2002; Krist, 2009; Zanette, Clinchy &
Sung, 2009). No study tested for egg-size effects on offspring
survival as adults. The lack of studies looking at long-term
effects of egg size is unfortunate. As an important component
of early offspring environments, egg size is likely to have
consequences for offspring reproductive success, given that
similar effects are often found for other components of
early offspring environments (reviews in Lindström, 1999;
Monaghan, 2008), such as natal brood size (Gustafsson,
Qvarnström & Sheldon, 1995; Naguib, Nemitz & Gil,
2006; Alonso-Alvarez, Bertrand & Sorci, 2007), maternal
nutritional condition (Gorman & Nager, 2004), and prenatal
exposure to androgens (Rubolini et al., 2007).

The three fitness components may be negatively correlated
due to trade-offs (Schluter, Price & Rowe, 1991; Roff, 2002;
Lailvaux, Hall & Brooks, 2010), or positively correlated due
to differences among individuals in resource acquisition (van
Noordwijk & de Jong, 1986; Reznick, Nunnev & Tessier,
2000; Vorburger, 2005). Therefore, we cannot infer fitness
from knowledge of only one component of fitness (Kokko
et al., 2003; Hunt et al., 2004; Lailvaux et al., 2010). Despite
the theoretical importance of egg-size effects on offspring
fecundity (Marshall & Keough, 2008) or survival as an adult,
these effects also have been neglected in non-avian animal
taxa. They were not mentioned in reviews of fish (Green,
2008) and arthropods (Fox & Czesak, 2000) and only a
few studies on offspring fecundity have been carried out in
reptiles (Sinervo & Doughty, 1996), and marine invertebrates

(e.g. Marshall, Bolton & Keough, 2003; Dias & Marshall,
2010). In contrast to the few studies on animals, in plants
the relationship between seed size and subsequent offspring
fecundity has been studied quite routinely (e.g. Stanton,
1984; Mazer, 1987; Mazer & Wolfe, 1998).

To conclude, in birds, only one component of offspring
fitness—juvenile survival—has been widely studied for
its dependence on egg size. Egg-size effects on offspring
fecundity and adult survival remain to be tested. Similarly,
the relationship between egg size and offspring global fitness,
not its components, remains to be established in any animal
taxa. Such a study would test something different than
studies that looked at selection on egg size (Hõrak, Mänd
& Ots, 1997; Garant et al., 2007; Kontiainen et al., 2008).
These latter studies tested for the relationship between egg
size and the lifetime reproductive success of individuals that
laid the eggs, not those that hatched from them. This level
was appropriate for their purpose since selection optimizes
maternal, not offspring fitness (Marshall & Uller, 2007). By
contrast, if we want to parameterize the Smith & Fretwell
(1974) or other optimization models we need to know the
quantitative relationship between egg size and offspring
fitness (Marshall & Keough, 2008; Dias & Marshall, 2010).

Apart from the life-history stage when offspring traits were
measured, morphological traits were studied most often
(1121/1805 estimates, i.e. 62.1%), followed by offspring
survival (28.6%) and growth rate of morphological traits
(7.1%). Only a few estimates were made on chick immunity
(1.1%), egg fertility (0.5%), chick behaviour/activity (0.3%),
adult life-history (0.2%), and sexual traits (0.2%). This
skewed distribution somewhat parallels studies of selection
(Kingsolver et al., 2001) and avian quantitative genetics
(Merilä & Sheldon, 2001). In both of these other
fields, morphological traits also were the most commonly
studied with a few studies performed on behavioural and
physiological traits. The difference is that in these fields, life-
history traits were the second most commonly investigated
traits while only one study tested their dependence on egg
size (Krist, 2009). This neglect of offspring life-history traits
in the field of propagule size—offspring fitness is common
to other animal taxa (see above) in which generally the same
kind of traits as in birds were studied. However, in reptiles
the relationship between egg size and offspring locomotor
performances have often been studied (e.g. Sinervo, 1990;
Olsson, Wapstra & Olofsson, 2002; Warner & Andrews,
2002; Warner & Shine, 2009). This contrasts with birds
where there are only two such studies (Anderson & Alisauskas,
2001; Goth & Evans, 2004). Given that increased locomotor
performance may reduce predation risk and thus enhance
survival (Jayne & Bennett, 1990; Warner & Andrews, 2002)
and potentially enhance mating success (Byers, Hebets &
Podos, 2010) these traits should also be of interest in avian
research. A few studies also tested whether egg size predicts
begging intensity (Anderson & Alisauskas, 2001; Gilbert et al.,
2006; Rubolini et al., 2006a; Bonisoli-Alquati et al., 2007).
This offspring trait should also be of interest since begging
stimulates parental provisioning (e.g. Ottosson, Backman &
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Smith, 1997) that in turn can enhance or mitigate the initial
effect of egg size on offspring quality (Krist & Remeš, 2004).

(5) Manipulative approaches

Egg size may be correlated with embryo genes, egg
composition, and parental post-hatching care (Krist &
Remeš, 2004). Experimental manipulation of egg size may
uncouple most of these correlations and consequently may
be the best method to infer causal effect of egg size. However,
I did not include experimental studies in this meta-analysis
for several reasons.

Egg size may be manipulated in two distinct ways.
The indirect one utilizes females’ phenotypic plasticity
to lay differently sized eggs in different conditions. For
example, eggs might be enlarged by exposing females to an
experimentally enhanced food supply (Bolton et al., 1992), a
low temperature (Fischer et al., 2003), or a poor host quality
(Fox, 1997) in the pre-laying period. If the subsequent test of
egg-size effects on offspring is done within females (see e.g.
Wagner & Williams, 2007), this setting controls for genetic
effects similar to within-clutch comparisons, but with an
additional property that variance in egg size was increased
by experimental conditions. However, this approach does
not control for the other two potential confounders, egg
composition and parental care. In fact, the correlation
between experimentally induced changes in egg size and
post-hatching care or egg composition may be even larger
than in purely observational studies. It is easy to imagine,
for example, that food-supplemented females are in better
condition and consequently provide better care to their
chicks. Due to this threat, studies that indirectly manipulated
egg size were not included in the meta-analysis.

Egg size may also be manipulated directly by yolk (Sinervo,
1990; Sinervo et al., 1992) or albumen (Hill, 1993; Ferrari
et al., 2006) removal, physical removal of part of developing
follicles which effectively increase the size of those remaining
(Sinervo & Licht, 1991b), or the manipulation of the female
hormonal function involved in follicle growth (Sinervo &
Licht, 1991a; Williams, 2001). The most direct manipulation
is one that manipulates the egg size outside the female
after laying. Similar manipulations were first carried out in
urchins (Sinervo & McEdward, 1988; but see Marshall &
Keough, 2008 for criticism of the experimental approach
used in this taxon) and reptiles (Sinervo, 1990; Sinervo et al.,
1992). More recently, these techniques have been applied
to fish (Morley et al., 1999; Jardine & Litvak, 2003) and
poultry (Hill, 1993; Finkler, van Orman & Sotherland, 1998)
and only very recently to wild birds (Ferrari et al., 2006;
Bonisoli-Alquati et al., 2007, 2008). These studies generally
find positive relationships between egg size and offspring
quality. These approaches, providing the most causal test
of egg-size effects, can only suffer if the parents adjust their
post-hatching care according to the state of the hatchlings
(Krist & Remeš, 2004).

These manipulative studies are difficult to pool together
with studies that utilized natural variation in egg size. For
example, if we find the correlation r = 0.2 between egg

volume and chick mass, this means that a change of 1 S.D.
in egg volume causes a 0.2 S.D. change in mass. However,
if we find that the removal of 1 S.D. of egg volume content
causes a difference of 0.2 S.D. in body mass, how should
this be interpreted? Is this effect equal to the former one?
This question is difficult to answer, because egg content is
not homogenous and in practise only albumen or yolk is
usually removed while the other part is left intact. However,
for the developing embryo it may be more relevant what
proportion of albumen was removed, or how the ratio of
albumen to yolk content changed (see Ferrari et al., 2006),
not the volume of egg removed. In other words, it is unclear
how to measure the strength of the experimental treatment.
Moreover, except for the whole size of the egg, this strength
can only be estimated for each particular egg since the
proportion of yolk and albumen cannot be determined
for any individual egg if the aim is to leave the embryo
alive. These difficulties do not mean that it is impossible to
compare manipulative and observational studies but with
only three manipulative studies available (Ferrari et al., 2006;
Bonisoli-Alquati et al., 2007, 2008) this would not be very
meaningful.

In contrast to the manipulation of already laid eggs,
manipulation of developing eggs inside females is less direct
since this can affect female condition, rearing abilities, and
also egg composition. These effects were argued to be
negligible in the case of the recently developed technique of
the application of tamoxifen that functions as an antiestrogen
(Wagner & Williams, 2007). However, such effects are
unlikely to be fully absent. At the very least, females that
laid miniaturized eggs did not pay the costs of laying large
ones (see Williams, 2005; Nager, 2006) and therefore might
be in better condition after laying. At worst, manipulation
of hormonal metabolism might affect the deposition of
hormones into eggs thus creating a strong confounding
correlation between egg size and egg composition.

(6) Egg composition and effect size in other taxa

Egg composition came to the attention of avian ecologists
after the publication of Schwabl’s (1993, 1996) studies
reporting that yolk steroids affected chick quality. Many
subsequent studies found effects of the concentration of
yolk androgens (reviews in Gil, 2003, 2008; Groothuis et al.,
2005) and carotenoids (e.g. Saino et al., 2003; McGraw,
Adkins-Regan & Parker, 2005; but see Remeš et al., 2007) on
chick performance. Given these new findings, an intriguing
question arises: is egg size more or less important for chick
quality than egg composition? This question has no answer
yet. Results of some studies indirectly suggested that egg
composition might be more important (Nager et al., 2000;
Reed et al., 2009) while others suggested the opposite pattern
(Rubolini et al., 2006a) or found an interactive effect of egg
size and composition (Romano et al., 2008). This issue can
be resolved by meta-analysis of composition effects and
their comparison with results of the present study. Such
comparison would be a necessary step to unravel by which of

Biological Reviews 86 (2011) 692–716 © 2010 The Author. Biological Reviews © 2010 Cambridge Philosophical Society



710 Miloš Krist

these pathways females may more effectively adjust offspring
phenotype.

Similarly, it would be of great interest to elucidate
whether egg-size effects on offspring quality are the same,
weaker, or larger in other oviparous taxa compared to birds.
For example, I reviewed only a few studies on egg-size
effects in fish, yet several effect sizes were larger than the
largest effect size found for the same condition in birds.
Einum & Fleming (2000) found in Atlantic salmon (Salmo

salar) a correlation between egg size and juvenile body
mass (r = 0.90 and 0.66 at juvenile age of 28 and 107 days,
respectively). Similarly, juvenile survival at age 20 days was
very highly correlated (r = 0.87 and 0.88 at high and low
food levels, respectively) with egg size in brook trout, Salvelinus

fontinalis (Hutchings, 1991). These examples suggest that egg
size may be more important for offspring fitness in fish, a taxa
with less-developed post-hatching parental care compared to
birds.

V. CONCLUSIONS

(1) This meta-analysis is the first quantitative assessment of
the relationship between propagule size and offspring quality
done in any animal or plant taxon. Egg size was positively
related to nearly all studied offspring traits during all stages
in their life cycle. However, this research effort was severely
biased to offspring morphological traits and those in the early
stages in their life cycle. Only a few studies were performed on
offspring behavioural, physiological, life-history, and sexual
traits. Few followed the offspring until the post-fledging
stage, and nearly none until sexual maturity. Consequently,
evidence that juvenile survival is positively related to egg
size is robust but relationships between egg size and adult
survival, fecundity or global fitness of offspring are unknown
at present. This remains a major challenge for further
work.

(2) A major question is whether the positive relationships
between egg size and offspring quality are driven by a causal
effect of egg size or by some other variable that is correlated
with egg size. Independent of egg size, offspring quality may
be affected by parental post-hatching care, direct action of
genes, and egg composition. This meta-analysis found no
difference in effect size between observational and cross-
fostering studies. This suggests little confusion of the effect
size by parental or territory quality. Largely untested is
the possibility that effect size is confounded by parental
adjustment of post-hatching care, although some indirect
evidence suggests that this should not be a problem. Direct
genetic effects do not confound relationships at the within-
clutch level which were also found to be significant, although
of lower magnitude. A few studies that manipulated egg
size directly in wild birds showed that egg size is related
to offspring quality regardless of egg composition. In sum,
these pieces of evidence suggest that relationships found in
this meta-analysis are driven primarily by a causal effect of
egg size. However, more studies controlling for potentially

confounding variables are needed to establish firmly the
causality of these relationships.

(3) The relationship between egg size and offspring traits
found within broods was smaller than that found between
broods. This can be caused by (a) less intraclutch egg-size
variation, (b) parental within-brood compensation of a poor
start by the young from small eggs through increased food-
provisioning, or (c) a correlation of egg size with genetic
effects in between-clutch settings. Further resolution of these
hypotheses is impossible at present due to the scarcity of
studies testing for direct genetic effects, parental provisioning,
and those that decreased egg size variation at the between-
clutch level or increased it at the intraclutch level.

(4) The relationship between egg size and offspring traits
was larger if tested in captivity than in the wild, which can be
explained by the better control of confounding variables in
laboratory conditions. Larger effect size in benign laboratory
conditions is opposite of what is assumed by theoretical
models and usually found in observational studies in birds
and experimental studies in other taxa. More studies are
needed that manipulate the offspring environment. For
example, studies that involve food supplementation or brood-
size manipulation, and compare egg-size effects in benign
and harsh conditions.

(5) At present, the effects of egg composition on chick
quality are often studied. It would be of great interest to
elucidate whether the offspring phenotype may be more
effectively manipulated by egg size or egg composition.
This can be achieved by meta-analysis in the field of
egg composition and comparison of the found effect sizes
with those in the present study. Similarly, meta-analyses of
relationships between egg size and offspring quality in other
oviparous taxa and their comparison with the present study
can add to our understanding of life-history diversity among
animal and plant taxa.
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Mänd, R. (1985). On the relationship of the egg size with the growth rate and survival
of the young in some Laridae species [in Russian]. Proceedings of the Academy of Sciences

of the Estonian SSR: Biology 34, 34–44.
Marshall, D. J., Bolton, T. F. & Keough, M. J. (2003). Offspring size affects

the post-metamorphic performance of a colonial marine invertebrate. Ecology 84,
3131–3137.

Marshall, D. J. & Keough, M. J. (2008). The evolutionary ecology of offspring size
in marine invertebrates. Advances in Marine Biology 53, 1–60.

Marshall, D. J. & Uller, T. (2007). When is a maternal effect adaptive? Oikos 116,
1957–1963.

Martin, T. E., Bassar, R. D., Bassar, S. K., Fontaine, J. J., Lloyd, P., Math-
ewson, H. A., Niklison, A. M. & Chalfoun, A. (2006). Life-history and ecolog-
ical correlates of geographic variation in egg and clutch mass among passerine
species. Evolution 60, 390–398.

Mateo, J. M. (2009). Maternal influences on development, social relationships,
and survival behaviors. In Maternal Effects in Mammals (eds. D. Maestripieri &
J. M. Mateo), pp. 133–158. Chicago: The University of Chicago Press.
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.

Appendix S1. Search terms and lists of studies that were
included (N = 283) and not included (N = 383) in the meta-
analysis. The selection criterion which disallowed inclusion
of a given study into the meta-analysis is given for each
excluded study.

Appendix S2. Phylogenetic relationships among species
included in the meta-analysis and methods of phylogenetic
regression.

Appendix S3. The dataset. This Excel file has two
sheets labelled ‘‘analyzed data’’ and ‘‘all data’’. The sheet
‘‘analyzed data’’ has 23 columns with a list of variables
used in statistical analyses and 1805 rows that correspond to
1805 analyzed estimates. The sheet ‘‘all data’’ has additional
columns and 2318 rows. The additional columns contain

for example: original statistics given in the published papers;
formulae used to adjust effect size for dichotomization and
range restriction/enhancement, and to compute Pearson’s
r from other statistics; and variables that divide study into
subgroups and those that were statistically controlled for
when testing for egg-size effect. The sheet ‘‘analyzed data’’
can be created from the sheet ‘‘all data’’ by selecting columns
whose headings are given in red bold and rows that do not
contain the phrase ‘‘pseudoreplication’’ (N = 512 ) or ‘‘rare
design’’ (N = 1 ) in column named ‘‘reason for exclusion’’.
References for the studies included in this appendix are given
in Appendix S1.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the
article.
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Appendix 2. Phylogenetic relationships among species included in the meta-analysis and methods of 
phylogenetic regression. 
 
A. Phylogeny construction 

 
A phylogeny of the species analyzed in this meta-analysis (Fig. A1) was constructed from the following 
sources: Hackett et al. (2008) (higher phylogeny), Jønsson & Fjeldså (2006) (Passeriformes), Wink, 
Heidrich & Fentzloff (1996) (Accipitriformes), Thomas, Wills & Székely (2004) (Charadriiformes), 
Kennedy & Page (2002) (Procellariformes), Ksepka, Bertelli & Giannini (2006) (Sphenisciformes), 
Kennedy, Gray & Spencer (2000) (Phalacrocoracidae), Friesen & Anderson (1997) (Sulidae), Fain, 
Krajewski & Houde (2007) (Gruiformes), Gonzales, Düttmann & Wink (2009) (Anseriformes). 
 
B. Phylogenetic regression 

 
Phylogenetic regression of species egg volume on species body mass was fitted by generalized least 
squares (GLS) function available in the NLME package of R environment. GLS is a general function that 
can take correlations between observations into account. In this case, correlation structure among species 
was generated under the assumption of a Brownian motion model and equal branch length in package 
APE (see Paradis, 2006, pp. 144-147). The phylogenetic regression provided the prediction: loge egg 
volume=-0.912+0.695 x loge female body mass, N=162 species, R2=0.906, P<0.001. Residuals from this 
regression were taken and used as an alternative measure of relative egg size. In both the common-effect 
weighting scheme and unweighted analysis this variable was not statistically significant (results not 
shown). Consequently, final models were the same regardless of which regression method was used to 
calculate relative egg size. 
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Quiscalus major
Quiscalus mexicanus
Quiscalus quiscula
Agelaius phoeniceus
Molothrus ater
Xanthocephalus xanthocephalus
Melospiza melodia
Melospiza lincolnii
Zonotrichia leucophrys
Emberiza jankowskii
Dendroica petechia
Passer domesticus
Passer montanus
Carpodacus mexicanus
Anthus pratensis
Taeniopygia guttata
Erythrura gouldiae
Ficedula hypoleuca
Ficedula albicollis
Phoenicurus phoenicurus
Turdus merula
Sialia sialis
Sturnus vulgaris
Troglodytes aedon
Certhia familiaris
Hirundo rustica
Delichon urbica
Tachycineta bicolor
Cinclorhamphus cruralis
Poecile montanus
Parus major
Cyanistes caeruleus
Petroica australis
Corvus monedula
Corvus corone
Pica pica
Lanius senator
Lanius bucephalus
Terpsiphone muttata
Malurus cyaneus
Empidonax minimus
Forpus passerinus
Myiopsitta monachus
Falco naumanni
Falco tinnunculus
Falco sparverius
Falco peregrinus
Milvus migrans
Accipiter gentilis
Aquila adalberti
Aquila wahlbergi
Gymnogyps californianus
Aegolius funereus
Strix uralensis
Dendrocopos leucotos
Larus occidentalis
Larus dominicanus
Larus hyperboreus
Larus argentatus
Larus schistisagus
Larus michahellis
Larus fuscus
Larus delawarensis
Larus atricilla
Rissa trydactyla
Larus ridibundus
Sterna hirundo
Sterna paradisea
Sterna dougallii
Sterna hirundinacea
Sterna fuscata
Sterna caspia
Anous tenuirostris
Anous stolidus
Catharacta skua
Catharacta maccormicki
Uria lomvia
Alca torda
Alle alle
Calidris minutilla
Calidris alpina
Calidris himantopus
Tringa totanus
Tringa flavipes
Phalaropus lobatus
Limosa haemastica
Limosa limosa
Gallinago gallinago
Numenius phaeopus
Charadrius alexandrinus
Charadrius semipalpatus
Charadrius morinellus
Vanellus vanellus
Vanellus indicus
Pluvialis dominica
Haematopus ostralegus
Recurvirostra avocetta
Puffinus puffinus
Puffinus yelkouan
Calonectris diomedea
Puffinus tenuirostris
Bulweria bulwerii
Pachyptila belcheri
Fulmarus glacialis
Daption capense
Thalassoica antarctica
Pagodroma nivea
Diomedea exulans
Thalassarche bulleri
Pelagodroma marina
Oceanites oceanicus
Oceanodroma furcata
Spheniscus demersus
Spheniscus magellanicus
Eudyptes chrysolophus
Eudyptes schlegeli
Pygoscelis antarctica
Pygoscelis papua
Phalacrocorax atriceps
Phalacrocorax aristotelis
Phalacrocorax auritus
Sula nebouxii
Sula dactylatra
Sula serrator
Pelecanus erythrorhynchos
Pelecanus occidentalis
Ardea purpurea
Grus vipio
Grus antigone
Grus japonensis
Grus monacha
Fulica americana
Fulica atra
Porphyrio porphyrio
Guira guira
Otis tarda
Columba livia
Columba palumbus
Podiceps cristatus
Apus melba
Apus apus
Anas acuta
Anas platyrhynchos
Anas discors
Aythya affinis
Aythya ferina
Aix sponsa
Somateria mollissima
Somateria spectabilis
Lophodytes cucullatus
Branta canadensis
Branta leucopsis
Branta bernicla
Chen rossii
Chen caerulescens
Cygnus olor
Oxyura jamaicensis
Anseranas semipalpata
Gallus gallus
Lagopus lagopus
Alectura lathami
Rhea americana

Figure A1. Phylogenetic relationships among species included in this meta-analysis. 


