

What is

CTUGENETICS P

Study of the CHROMOSOMES

- Structure
- Function
- Behavior during mitosis and meiosis
- Evolution

LECURE OVERVEN

Eukaryotic Chromosome [structure, function]

Human karyotype [autosomes, sex chromosomes]

Cytogenetic techniques chromosome banding FISH, M-FISH, SKY, CGH

chroma = "colour"

soma = "body" GEBONDSONE

- "Packages" that carry out genes
- Threadlike structures located in the <u>cell nucleus</u>
- Composed of substance called <u>chromatin</u>: DNA proteins

TWO conflicting requirement of the cell:

Chromosomes are dynamic structures Gross morphology dynamically changes during the cell cycle

It is important to distinct between interphase and mitotic chromosomes

interphase

 G_2

CELL

CYCLE

G,

Μ

Chromosomes exist as ultrafine threads of chromatin dispersed throughout the nucleus

metaphase

Chromatin condense into short cylindrical thick chromosomes

____50 nm

Interphase chromosome

STRUCTUR

BBBBBB

Molecular structure of

<u>chromatin</u>:

nueleosome...

DNA histone proteins non-histone proteins

[RNA polymerase, DNA-binding proteins, gene regulators]

DNA double helix coils around a central core

of <u>eight histone molecules</u> to make <u>nucleosome</u>

> Another <u>histone (H1)</u> clamps DNA to the core

DNA per each nucleosome contain about 200 base pairs

...elementary structural unit of chromatin

11 nm

Short region of naked DNA link each nucleosome: **<u>11nm chromatin fiber</u>**

The "**beads**" = nucleosomes The "**threads**" = DNA

CHROMATIN in INTERPHASE NUCLEUS

Most interphase chromatin is condensed into 30nm coil Chromatin fiber in the nucleus is organized into <u>discrete loop domains</u>

Lightly-staining

transriptional active

transriptional inactive

Constitutive heterochromatin:

- contains few genes
- always condensed
- formed of sequences located in regions coincident with centromeres and telomers

Facultative heterochromatin

- composed of transcriptional active regions
- may be euchromatin in some developmental or physiological states and heterochromatin in others

FORMING METAPHASE CHROMOSOME

PACKING

GUBDMATIK

The way from the...

... is a highly organized process

DNA wrapped around histones create nucleosom nucleosomes are linked together by DNA

The highest level of chromosome organization appears during...

High-order helically coiled chromatin forms cylindrical chromosome

Mitotic metaphase is the best stage for studying chromosome morphology

MEMPHASE

GUBOMOSOME

Morphological characteristic of CHROMOSOMES

- CENTROMERE position [determines the ratio of arm length]
- Presence of NUCLEOLAR ORGANISER regions [NORs] and FRAGILE SITE

Chromosome SIZE

Fourfold differences in human chromosome size

^{*}Ivana FELLNEROVÁ, PřF UP Olomouc*

CENTROMERE

centromere = primary constriction region of a mitotic chromosome

divides chromosome into two arms "p" and "q"

Metaphase chromosome

holds sister chromatids together during mitosis

Closer look at CENTROMERE

 contents a special kind of DNA sequence
 represents constitutive heterochromatin

centromere

Kinetochor and spindle fiber

centromere is the region where spindle fiber is attached spindle fiber separates sister chromatids during cell division

Other specific regions of chromosomes

KINETOCHORE

- A protein structure that forms at each centromere on mitotic chromosome
- Serves as the attachment point for the spindle fiber

TELOMERE

- Series of short tandem repeats at the end of chromatids.
- Prevents chromosomes from shortening with each replication cycle
- Protects chromosome from nuclease digestion

NORs [nucleolar organizer regions]

- Region close centromere of human chromosomes 13, 14, 15, 21 a 22
- Can be identified as secondary constrictions on metaphase chromosomes
- Contains gene coding rRNA
- Found in all individuals

Fragile sites

- Weak spots where metaphase chromosomes tend to break
- Look like nonstaining gaps or constriction
- Unlike NORs does not occur in all individuals
- Best known on the long arm of X chromosome

All eukaryotic cells store their heredity information in <u>chromosomes</u>

- Eukaryotic organisms differs by <u>chromosome number</u> and chromosome <u>morphology</u>
- A simplest way to examine chromosomes is look at a <u>karyotype</u>

Is organized profile of metaphase chromosomes of individual cell

Karyotype is specific to an individual or to related group [species]

KARYOTYPE include information about:

- chromosome <u>number</u>
- chromosome <u>size</u>
- chromosome shape [morphology]
- composition of the <u>sex chromosomes</u>
- some chromosomal <u>abnormalities</u>

CELL MATERIAL for KARYOTYPE:

Tissue source of cell:

blood – lymphocytes amniotic fluid bone marrow skin

Cell culture pretreatment:

- stimulation of cell proliferation [using mitogen like chemicals]
- stop cell division at a stage when chromosomes are most condensed and clearly distinguishable [using colchicine –as a spindle arresting agent to accumulate metaphase]

MAKING a KARYOTYPE:

- Metaphase cells are <u>fixed and stained</u> on microscope slide
- Scanning for <u>"good looking" chromosome spreads</u> [not too compact or overlapping]
- Taking picture through a microscope

- Cutting out images of each chromosome and <u>arranging them in order</u>
- Alternatively, a <u>digital image</u> of chromosomes can be <u>cut and paste</u> using a computer

Human metaphase spreads: different tissue

Bone marrow

Blood

KARYOTYPE ARRANGEMENT

In karyotype, chromosomes are arranged according to:

Size

chromosomes are arranged and numbered <u>from largest to smallest</u>, with the short <u>p-arm on the top</u> [p=petit]

- Centromere location
- Banding patterns

Human karyotype :

Karyotype is presented in standard form:

Total number of chromosomes is given, followed by comma andsex chromosomes constitution:46, XX46, XYhuman male

Human female karyotype

Human male karyotype

chromosomes

Sex chromosomes

Samples of human karyotype

Blood

1			ş		1>	
-	Ŗ	28	1	€ € 10	्र स्थान 11	12
13)) 14	15	16	¢	17	\$ 5 18
19 19	8 8 20	21	22	i	× Sanct	1 Y

Bone marrow

Human SEX chromosomes

SEX determination

heterogametic

homogametic

Sex Determination General Rule in Mammals:

If a Y chromosome is present, it will be a male.

If a Y chromosome is <u>not</u> present, it will be a female.

Why Y chromosome determinates male sex?

Ivana FELLNEROVÁ, PřF UP Olomouc

It is not the entire Y chromosome, but just <u>one gene</u> that triggers development of the testes and via hormones maleness

are essential for pairing in meiosis.

SRY gene presented on X chromosome

SRY gene on Y chromosome is mutated or missing

SRY (Sex determining Region on the Y) Recombination

Females have two copies of every X-linked gene; males have only one.

How is this difference compensated for?

It happened by the process called:

DOSAGE COMPENSATION

X-chromosome inactivation in females

Inactive X-chromosome forms:

Barr bodies are normally found only in female somatic cells

Barr body math

Multiple X chromosomes

In cells with more than two X chromosomes, only one X remains genetically active and all the others become inactivated

A woman with the chromosome constitution 47, XXX should have 2 Barr bodies in each cell A woman with the chromosome constitution 48, XXXX should have 3 Barr bodies in each cell

FEMALE: 47, XXX

FEMALE: 48, XXXX